Iranian Journal of Pediatrics

Published by: Kowsar

Bone Marrow Mesenchymal Stem Cell with Up-Regulation of MicroRNA-206 in the Treatment of Bronchopulmonary Dysplasia in Newborn Mice

Xiaojun Xu 1 , Xiaoying Zhang 2 , Shen Zhang 2 and Zhichun Feng 1 , *
Authors Information
1 BaYi Children’s Hospital of the General Military Hospital of Beijing PLA of An Hui Medical University, Beijing, China
2 Stem Cell Centre, BaYi Children’s Hospital of the General Military Hospital of Beijing PLA, Beijing, China
Article information
  • Iranian Journal of Pediatrics: 29 (3); e11121
  • Published Online: January 26, 2019
  • Article Type: Research Article
  • Received: February 22, 2017
  • Revised: October 14, 2018
  • Accepted: November 2, 2018
  • DOI: 10.5812/ijp.11121

To Cite: Xu X, Zhang X , Zhang S , Feng Z . Bone Marrow Mesenchymal Stem Cell with Up-Regulation of MicroRNA-206 in the Treatment of Bronchopulmonary Dysplasia in Newborn Mice, Iran J Pediatr. Online ahead of Print ; 29(3):e11121. doi: 10.5812/ijp.11121.

Abstract
Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Baker CD, Ryan SL, Ingram DA, Seedorf GJ, Abman SH, Balasubramaniam V. Endothelial colony-forming cells from preterm infants are increased and more susceptible to hyperoxia. Am J Respir Crit Care Med. 2009;180(5):454-61. doi: 10.1164/rccm.200901-0115OC. [PubMed: 19483112]. [PubMed Central: PMC2742761].
  • 2. Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: Implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L1073-84. doi: 10.1152/ajplung.00347.2006. [PubMed: 17209139].
  • 3. Zhang X, Wang H, Shi Y, Peng W, Zhang S, Zhang W, et al. Role of bone marrow-derived mesenchymal stem cells in the prevention of hyperoxia-induced lung injury in newborn mice. Cell Biol Int. 2012;36(6):589-94. doi: 10.1042/CBI20110447. [PubMed: 22339670].
  • 4. Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: Phase 1 dose-escalation clinical trial. J Pediatr. 2014;164(5):966-972 e6. doi: 10.1016/j.jpeds.2013.12.011. [PubMed: 24508444].
  • 5. Chang YS, Oh W, Choi SJ, Sung DK, Kim SY, Choi EY, et al. Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats. Cell Transplant. 2009;18(8):869-86. doi: 10.3727/096368909X471189. [PubMed: 19500472].
  • 6. Chang YS, Choi SJ, Sung DK, Kim SY, Oh W, Yang YS, et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells dose-dependently attenuates hyperoxia-induced lung injury in neonatal rats. Cell Transplant. 2011;20(11-12):1843-54. doi: 10.3727/096368911X565038. [PubMed: 23167961].
  • 7. Chang YS, Choi SJ, Ahn SY, Sung DK, Sung SI, Yoo HS, et al. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLoS One. 2013;8(1). e52419. doi: 10.1371/journal.pone.0052419. [PubMed: 23349686]. [PubMed Central: PMC3549907].
  • 8. van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):1131-42. doi: 10.1164/rccm.200902-0179OC. [PubMed: 19713449]. [PubMed Central: PMC3269236].
  • 9. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med. 2009;180(11):1122-30. doi: 10.1164/rccm.200902-0242OC. [PubMed: 19713447]. [PubMed Central: PMC2784417].
  • 10. Abman SH, Matthay MA. Mesenchymal stem cells for the prevention of bronchopulmonary dysplasia: Delivering the secretome. Am J Respir Crit Care Med. 2009;180(11):1039-41. doi: 10.1164/rccm.200909-1330ED. [PubMed: 19923401].
  • 11. Luan Y, Ding W, Ju ZY, Zhang ZH, Zhang X, Kong F. Bone marrow-derived mesenchymal stem cells protect against lung injury in a mouse model of bronchopulmonary dysplasia. Mol Med Rep. 2015;11(3):1945-50. doi: 10.3892/mmr.2014.2959.
  • 12. Cheng J, Zhou L, Xie QF, Xie HY, Wei XY, Gao F, et al. The impact of miR-34a on protein output in hepatocellular carcinoma HepG2 cells. Proteomics. 2010;10(8):1557-72. doi: 10.1002/pmic.200900646. [PubMed: 20186752].
  • 13. Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, et al. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta. 2010;231(5):991-1001. doi: 10.1007/s00425-010-1104-2. [PubMed: 20135324].
  • 14. Zhang X, Xu J, Wang J, Gortner L, Zhang S, Wei X, et al. Reduction of microRNA-206 contributes to the development of bronchopulmonary dysplasia through up-regulation of fibronectin 1. PLoS One. 2013;8(9). e74750. doi: 10.1371/journal.pone.0074750. [PubMed: 24040336]. [PubMed Central: PMC3769311].
  • 15. Rochefort GY, Delorme B, Lopez A, Herault O, Bonnet P, Charbord P, et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells. 2006;24(10):2202-8. doi: 10.1634/stemcells.2006-0164. [PubMed: 16778152].
  • 16. Zhang X, Liu S, Hu T, Liu S, He Y, Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009;50(2):490-9. doi: 10.1002/hep.23008. [PubMed: 19472311].
  • 17. Zhang X, Peng W, Zhang S, Wang C, He X, Zhang Z, et al. MicroRNA expression profile in hyperoxia-exposed newborn mice during the development of bronchopulmonary dysplasia. Respir Care. 2011;56(7):1009-15. doi: 10.4187/respcare.01032. [PubMed: 21310116].
  • 18. Wang XW, Xi XQ, Wu J, Wan YY, Hui HX, Cao XF. MicroRNA-206 attenuates tumor proliferation and migration involving the downregulation of NOTCH3 in colorectal cancer. Oncol Rep. 2015;33(3):1402-10. doi: 10.3892/or.2015.3731. [PubMed: 25607234].
  • 19. Zhang C, Yao C, Li H, Wang G, He X. Serum levels of microRNA-133b and microRNA-206 expression predict prognosis in patients with osteosarcoma. Int J Clin Exp Pathol. 2014;7(7):4194-203. [PubMed: 25120799]. [PubMed Central: PMC4129034].
  • 20. Ren J, Huang HJ, Gong Y, Yue S, Tang LM, Cheng SY. MicroRNA-206 suppresses gastric cancer cell growth and metastasis. Cell Biosci. 2014;4:26. doi: 10.1186/2045-3701-4-26. [PubMed: 24855559]. [PubMed Central: PMC4030529].
  • 21. Mataki H, Seki N, Chiyomaru T, Enokida H, Goto Y, Kumamoto T, et al. Tumor-suppressive microRNA-206 as a dual inhibitor of MET and EGFR oncogenic signaling in lung squamous cell carcinoma. Int J Oncol. 2015;46(3):1039-50. doi: 10.3892/ijo.2014.2802. [PubMed: 25522678].
  • 22. Yang Q, Zhang C, Huang B, Li H, Zhang R, Huang Y, et al. Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur J Gastroenterol Hepatol. 2013;25(8):953-7. doi: 10.1097/MEG.0b013e32835ed691. [PubMed: 23751352].
  • 23. Zhang H, Guo Y, Mishra A, Gou D, Chintagari NR, Liu L. MicroRNA-206 regulates surfactant secretion by targeting VAMP-2. FEBS Lett. 2015;589(1):172-6. doi: 10.1016/j.febslet.2014.11.043. [PubMed: 25481410]. [PubMed Central: PMC4281256].
  • 24. Hallman M. The surfactant system protects both fetus and newborn. Neonatology. 2013;103(4):320-6. doi: 10.1159/000349994. [PubMed: 23736009].
  • 25. Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest. 2011;121(9):3425-41. doi: 10.1172/JCI57582. [PubMed: 21821915]. [PubMed Central: PMC3163964].
  • 26. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56(1):16-23. doi: 10.2337/db06-1076. [PubMed: 17192460].
  • 27. Kallapur SG, Jobe AH. Contribution of inflammation to lung injury and development. Arch Dis Child Fetal Neonatal Ed. 2006;91(2):F132-5. doi: 10.1136/adc.2004.068544. [PubMed: 16492951]. [PubMed Central: PMC2672671].
  • 28. McAdams RM, Vanderhoeven J, Beyer RP, Bammler TK, Farin FM, Liggitt HD, et al. Choriodecidual infection downregulates angiogenesis and morphogenesis pathways in fetal lungs from Macaca nemestrina. PLoS One. 2012;7(10). e46863. doi: 10.1371/journal.pone.0046863. [PubMed: 23056493]. [PubMed Central: PMC3467273].
  • 29. Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, et al. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Resp Res. 2015;16(1):4. doi: 10.1186/s12931-014-0162-6.
  • 30. Tian XY, Zhang XD, Li QL, Shen Y, Zheng J. Biological markers in cord blood for prediction of bronchopulmonary dysplasia in premature infants. Clin Exp Obstet Gynecol. 2014;41(3):313-8. [PubMed: 24992784].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments